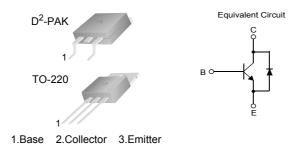


Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>


ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lange of the applicatio customer's to unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the

FAIRCHILD SEMICONDUCTOR®

KSC5338D/KSC5338DW NPN Triple Diffused Planar Silicon Transistor

Features

- High Voltage Power Switch Switching Application
- Wide Safe Operating Area
- Built-in Free-Wheeling Diode
- Suitable for Electronic Ballast Application
- Small Variance in Storage Time
- Two Package Choices : TO-220 or D²-PAK

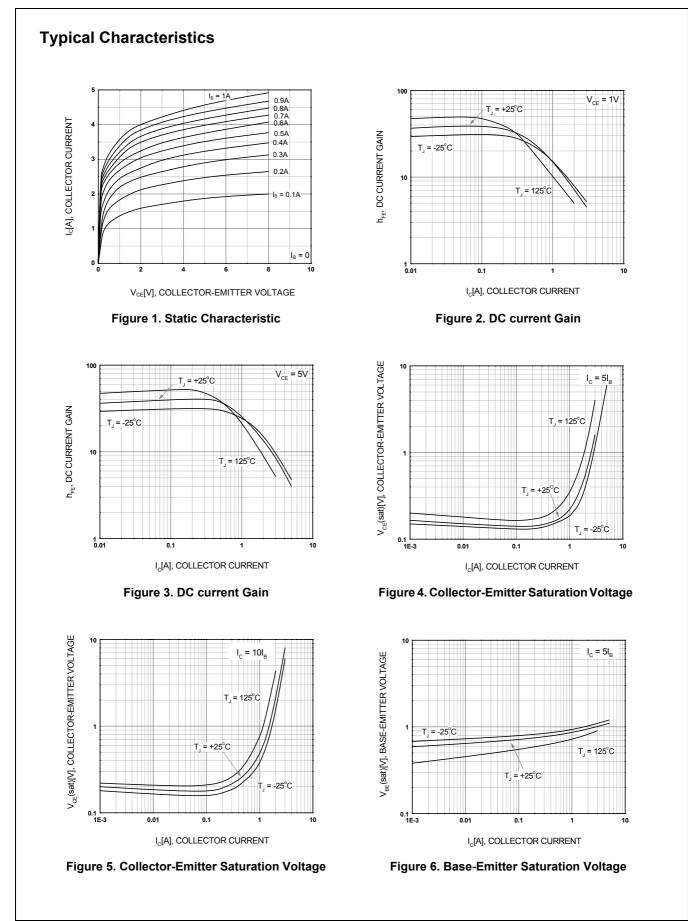
Absolute Maximum Ratings T_a=25°C unless otherwise noted

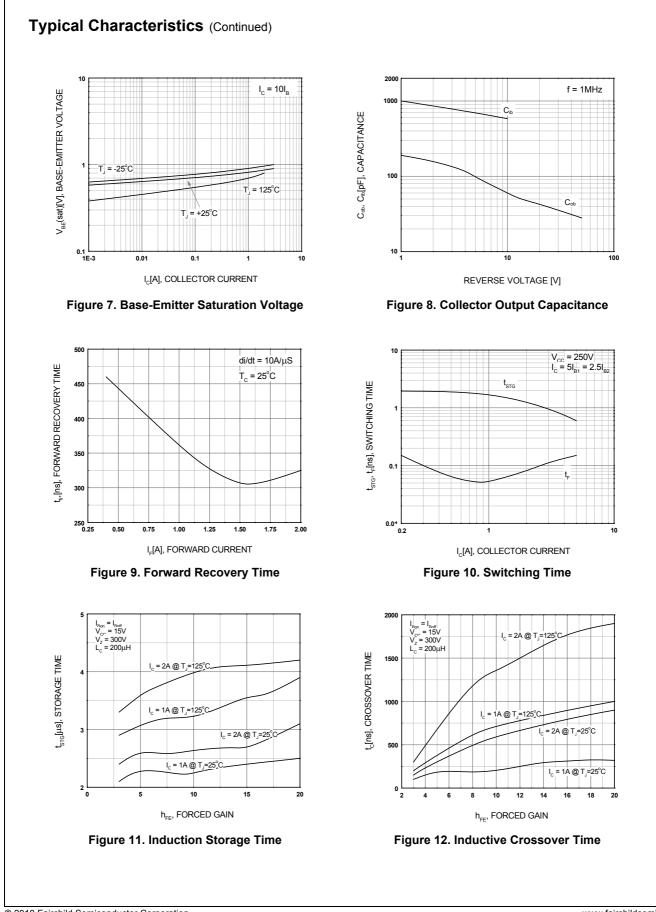
Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	1000	V
V _{CEO}	Collector-Emitter Voltage	450	V
V _{EBO}	Emitter-Base Voltage	12	V
Ι _C	Collector Current (DC)	5	A
I _{CP}	*Collector Current (Pulse)	10	Α
Ι _Β	Base Current (DC)	2	А
I _{BP}	*Base Current (Pulse)	4	А
P _C	Power Dissipation (T _C =25°C)	75	W
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	- 55 to 150	°C

* Pulse Test : Pulse Width = 5ms, Duty Cycle \leq 10%

Thermal Characteristics

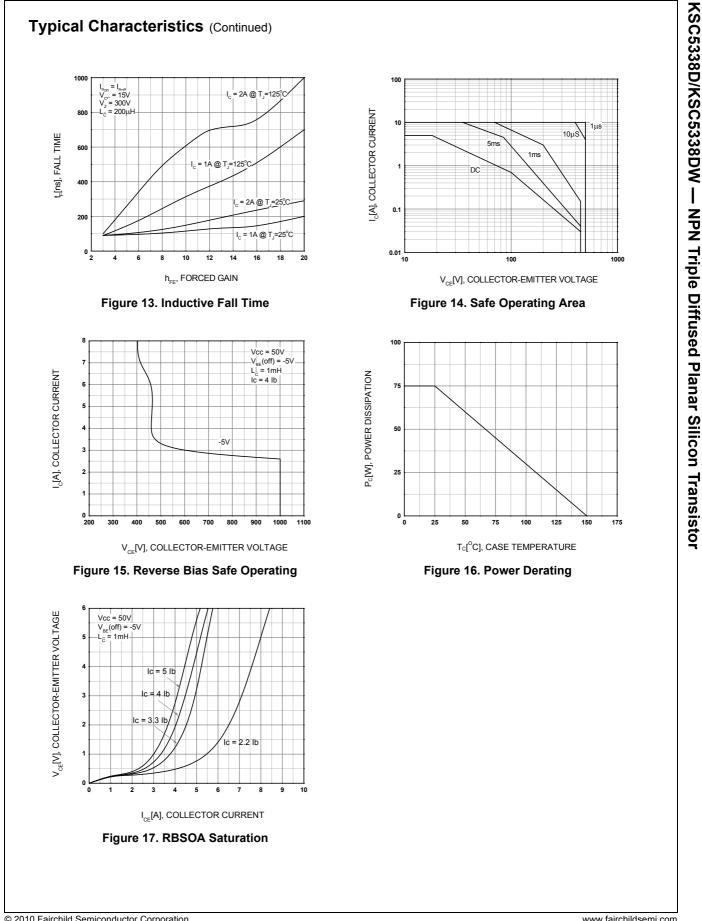
Symbol	Parameter		Rating	Units
R _{θjc}	- Thermal Resistance	Junction to Case	1.65	°C/W
R _{θja}		Junction to Ambient	62.5	°C/W
Τ _L	Maximum Lead Temperatu	re for Soldering	270	°C

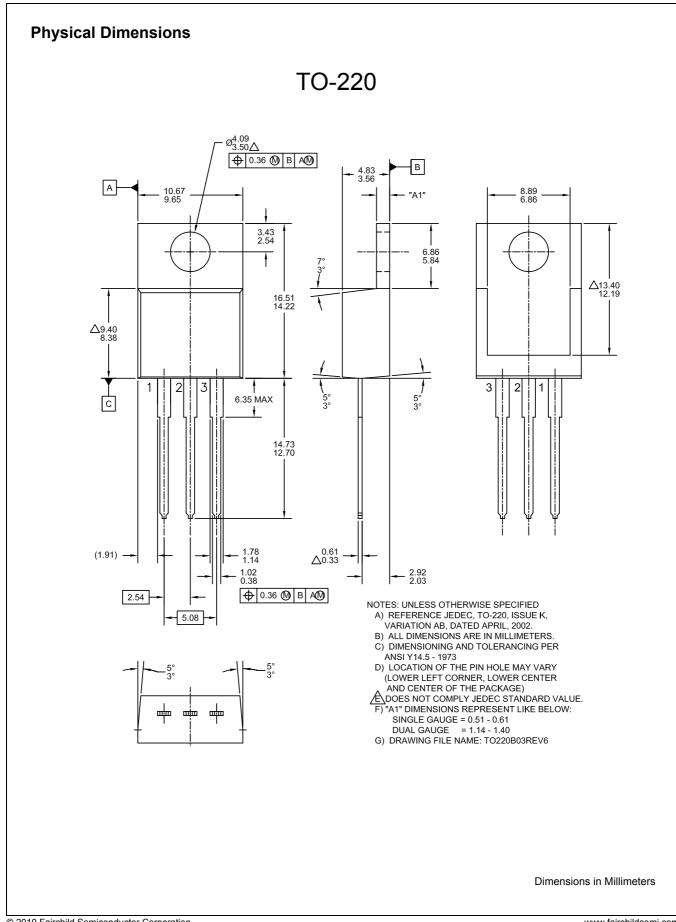

© 2010 Fairchild Semiconductor Corporation KSC5338D/KSC5338DW Rev. B1


May 2010

Symbol	Parameter	Test Cond	ition	Min.	Тур.	Max.	Units
BV _{CBO}	Collector-Base Breakdown Voltage	I _C =1mA, I _E =0		1000			V
BV _{CEO}	Collector-Emitter Breakdown Voltage			450			V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E =1mA, I _C =0		12			V
I _{CBO}	Collector Cut-off Current	V _{CB} =800V, I _E =0				10	μA
I _{CES}	Collector Cut-off Current	V _{CES} =1000V, I _{EB} =0	T _a =25°C			100	μΑ
020			T _a =125°C			500	μΑ
I _{CEO}	Collector Cut-off Current	V _{CE} =450V, I _B =0	T _a =25°C			100	μA
020			T _a =125°C			500	μA
I _{EBO}	Emitter Cut-off Current	V _{EB} =10V, I _C =0	u			10	μA
h _{FE}	DC Current Gain	V _{CE} =1V, I _C =0.8A	T _a =25°C	15	25		
. –				10	14		
		V _{CE} =1V, I _C =2A	T _a =25°C	6	9		
		OL / O		4	6		
		V _{CE} =2.5V, I _C =1A	T _a =25°C	18	25		
			T _a =125°C	14	18		
V _{CF} (sat)	Collector-Emitter Saturation Voltage	I _C =0.8A, I _B =0.08A	T _a =25°C		0.35	0.5	V
OL(11)			T _a =125°C		0.55	0.75	V
		I _C =2A, I _B =0.4A	T _a =25°C		0.47	0.75	V
			T _a =125°C		0.9	1.1	V
		I _C =0.8A, I _B =0.04A			0.9	1.5	V
			T _a =125°C		1.8	2.5	V
		I _C =1A, I _B =0.2A	T _a =25°C		0.22	0.5	v
		.С. н., .В. с. <u>–</u> . с	T _a =125°C		0.3	0.6	V
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C =0.8A, I _B =0.08A	T _a =25°C		0.8	1.0	V
BE(out)			T _a =125°C		0.65	0.9	V
		I _C =2A, I _B =0.4A	T _a =25°C		0.9	1.0	V
		1C 27 (, 1B 0.17 (T _a =125°C		0.8	0.9	v
C _{ib}	Input Capacitance	V _{EB} =10V, I _C =0.5A,	ŭ		550	750	pF
C _{ob}	Output Capacitance	V _{CB} =10V, I _E =0, f=1			60	100	pF
f _T	Current Gain Bandwidth Product	I _C =0.5A,V _{CE} =10V			11	100	MHz
V _F	Diode Forward Voltage	I _F =1A, I _C =1mA,	T _a =25°C		0.86	1.3	V
۷F	blode i of ward voltage	I _E =0	T _a =125°C		0.79	1.0	v
		I _F =2A	T _a =25°C		0.95	1.5	V
			T _a =125°C		0.88	1.0	V
t _{fr}	Diode Forward Recovery Time	I _F =0.4A	1a-120 0		460		ns
٩r	(di/dt=10A/µs)	I _F =1A			360		ns
		I _F =2A			325		ns
CE(DSAT)	Dynamic Saturation Voltage	I _C =1A, I _{B1} =100mA V _{CC} =300V at 1 μs	T _a =25°C		8		V
			T _a =125°C		15		V
		I _C =1A, I _{B1} =100mA	T _a =25°C		2.9		V
		V_{CC} =300V at 3 µs	T _a =125°C		8		V
		I _C =2A, I _{B1} =400mA V _{CC} =300V at 1 μs	T _a =25°C		9		V
			T _a =125°C		17		V
		I _C =2A, I _{B1} =400mA	T _a =25°C		1.9		V
		V_{CC} =300V at 3 µs		1	8.5	1	V

KSC5338D/KSC5338DW
- NPN Ti
Triple
e Diffused
Planar
Silicon
NPN Triple Diffused Planar Silicon Transistor


Symbol	Parameter	Test Co	ndition	Min	Тур.	Max.	Units
ESISTIVE	LOAD SWITCHING (D.C < 10%	, Pulse Width=40µs)					1
t _{ON}	Turn On Time	I _C =2.5A, I _{B1} =50	0mA,		500	750	ns
t _{STG}	Storage Time	I _{B2} =-1A, V _{CC} =2	50V, R _L = 100Ω	1.2		1.5	μS
t _F	Fall Time		-		100	200	ns
t _{ON}	Turn On Time	I _C =2A,	T _a =25℃		100	150	ns
011		I _{B1} =400mA,	T _a =125°C		150		ns
t _{STG}	Storage Time	I _{B2} =-1A,	T _a =25℃		1.4	2.2	μS
010		V _{CC} =300V, R _I = 150Ω	T _a =125°C		1.7		μs
t _F	Fall Time		T _a =25℃		90	150	ns
·			T _a =125°C		150		ns
t _{ON}	Turn On Time	I _C =2.5A,	T _a =25°C		120	150	ns
0N		I _{B1} =500mA,	T _a =125°C		150		ns
t _{STG}	Storage Time	I _{B2} =-5mA,	T _a =25℃	1.8		2.1	μS
010		V _{CC} =300V, R _I = 120Ω	T _a =125℃		2.6		μS
t _F	Fall Time	1(1 = 12022	T _a =25°C		110	150	ns
1			T _a =125°C		160		ns
NDUCTIVE	LOAD SWITCHING (V _{CC} =15V)		a				
t _{STG}	Storage Time	I _C =2.5A,	T _a =25℃		1.9	2.2	μS
010		I _{B1} =500mA,			2.4		μS
t _F	Fall Time	I _{B2} =-0.5A,	T _a =25°C		160	200	ns
1		V _Z =350V, L _C =300μH	T _a =125°C		330		ns
t _C	Cross-over Time	Ες=300μΠ	T _a =25°C		350	500	ns
-0			T _a =125°C		750		ns
t _{STG}	Storage Time	I _C =2A,	T _a =25°C	1.95		2.25	μS
-316		I _{B1} =400mA,	T _a =125°C		2.9		μS
t⊨	Fall Time	I _{B2} =-0.4A,	T _a =25°C		120	150	ns
4		V _Z =300V, L _C =200μH	T _a =125°C		270		ns
t _C	Cross-over Time	ις-200μπ	T _a =25°C		300	450	ns
-0			T _a =125°C		700		ns
t _{STG}	Storage Time	I _C =1A,	T _a =25°C		0.6	0.8	μS
-316		I _{B1} =100mA,	T _a =125°C		1.0		μο
t _F	Fall Time	I _{B2} =-0.5A,	T _a =25°C		70		ns
Ŧ		V _Z =300V,	T _a =125°C		110		ns
t _C	Cross-over Time	L _C =200μΗ	T _a =25°C		80	130	ns
•U			T _a =25 ℃ T _a =125°C		170		ns



KSC5338D/KSC5338DW — NPN Triple Diffused Planar Silicon Transistor

© 2010 Fairchild Semiconductor Corporation KSC5338D/KSC5338DW Rev. B1

© 2010 Fairchild Semiconductor Corporation KSC5338D/KSC5338DW Rev. B1

7

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower TM Auto-SPM TM Build it Now TM CorePLUS TM CorePOWER TM $CroePOWER^{TM}$ $CroePOWER^{TM}$ $CROSSVOLT^{TM}$ CTLT ^M Current Transfer Logic TM DEUXPEED [®] Dual Cool TM EcoSPARK [®] EfficientMax TM ESBC TM $fricientMax^{TM}$ ESBC TM $fricientMax^{TM}$ ESBC TM $fricientMax^{TM}$ ESBC TM $fricientMax^{TM}$ ESBC TM $fricientMax^{TM}$ ESBC TM $fricientMax^{TM}$ Fairchild [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series TM FACT [®] FAST [®] FastvCore TM FIsench TM FIashWriter [®] * FPS TM	F-PFS™ FRET® Global Power Resource SM Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroPak™ MicroPak™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ OptoHiT™ OPTOLOGIC® OPTOPLANAR®	Power-SPM TM PowerTrench [®] PowerXS TM Programmable Active Droop TM QEET [®] QS TM Quiet Series TM RapidConfigure TM O^{TM} Saving our world, 1mW/W/kW at a time TM SignalWise TM SmartMax TM SMART START TM SPM [®] STEALTH TM SuperSOT TM -8 SuperSOT TM -8 Sup	Figeneral The Ower Franchise® The Ower Franchise TinyBoost™ TinyBuck™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™* µSerDes™ Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™
			A0

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain life,
 and (c) whose failure to perform when properly used in accordance
 with instructions for use provided in the labeling, can be reasonably
 expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors who are full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

ecifications may change in
d at a later date. Fairchild tice to improve design.
the right to make changes
rchild Semiconductor.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC